
Newton
and the

Characteristic Polynomial of a Matrix

Nicholas Wheeler

December 2019

Introduction.Mytitle is, of course, anachronistic: matricesandtheir characteristic
polynomials did not enter into the thought of mathematicians until a full
century after Newton’s death. Both, however, derive from a concept—that
of the “determinant”—which, we are informed,1 was implicit in the efforts
of Chinese mathematicians to solve systems of simultaneous linear equations
already by the 3rd century BC. Two millennia elapsed before determinants
began to appear in the work—related again to that same problem—of Western
mathematicians (Cardano at the end of the 16th century, Leibniz in the 17th).
Determinants figure in the 18th century work of Vandermonde, Laplace and
Lagrange, but it was not until the 19th century that the subject came to be
studied in a systematic way, and to flourish: on 30 November 1812 Jacques
Binet and Arthur Cayley gave independent accounts of the basic properties of
determinants (it was Cayley who gave them their name), whereupon the subject
was taken up by Hamilton, Grassmann, Sylvester, Cramer, Gauss and many
others.

The theory of matrices came later, born of the theory of determinants.
Only in 1856 did Cayley describe matrix multiplication and inversion, and take
the important step of denoting such objects with a single symbol. He wrote
“There would be many things to say about this theory of matrices which should,
it seems to me, precede the theory of determinants.” Only as those things began
to be said did characteristic polynomials and their roots, together with much
else—including, as will emerge, the ghost of Newton—enter the picture.

1 See the Wikipedia articles “Determinant” and “Linear algebra.”
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Foreshadowing things to come. Let A be a 2×2 matrix:

A =
(

a11 a12

a21 a22

)

Then

detA = a11a22 − a12a21 (1)
trA = a11 + a22 (2.1)

trA2 = a2
11 + 2a11a22 + a2

22 = (a11 + a22)2 (2.2)
trA3 = a3

11 + 3(a11 + a22)a12a21 + a3
22 #= (a11 + a22)3

from which it follows in particular that

detA = 1
2

[
(trA)2 − trA2

]
(3)

The characteristic polynomial is

det(λI − A) = λ2 − (a11 + a22)λ + (a11a22 − a12a21)
= λ2 − λtrA + detA
= λ2 − λtrA + 1

2

[
(trA)2 − trA2

]
(4)

of which the roots (which we would find it difficult or impossible to write down
in higher-dimensional cases) are

λ1 = 1
2

[
(a11 + a22) +

√
(a11 − a22)2 + 4a12a21

]

λ2 = 1
2

[
(a11 + a22) −

√
(a11 − a22)2 + 4a12a21

] (5)

These entail

λ1 + λ2 = trA (6.1)
λ1λ2 = detA (6.2)

which also follow directly from comparison of (4) with

det(λI − A) = (λ − λ1)(λ − λ2) (7)
= λ2 − λ(λ1 + λ2) + λ1λ2

In λ-language (3) has become

λ1λ2 = 1
2

[
(λ1 + λ2)2 − (λ2

1 + λ2
2)

]
(8)

Newton—apparently unaware that he was duplicating/extending results
that were known to Albert Girard (1595–1632) already by 1629—in about
1666 pioneered the theory of symmetric polynomials, and it is because {λ1, λ2}
enter symmetrically into (6–8) that Newton enters the picture. My objective in
these pages will be to indicate how Newton’s identitiies illuminate the higher-
dimensional analogs of (6–8).
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Plan of attack: Tracewise construction of determinants. If A is n×n then the
definition

detA =
∑

P

(−)Pa1k1
a2k2

a3k3
· · · ankn

—here
∑

P signifies summation over all n! of the permutations

P =
(

1 2 3 . . . n
k1 k2 k3 . . . kn

)

and (−)P is the signature (parity) of P—shows the determinant detA to be
a profoundly antisymmetric function of the elements aij of A . On the other
hand,

detA = λ1λ2 · · ·λn

shows detA to be a profoundly symmetric function of the eigenvalues λi of A.
A similarly constrasting distinction pertains to these descriptions

det(λI − A) vs.
n∏

k=1

(λ − λk)

of the characteristic polynomial.

To bring these consructions into harmony my strategy will be (i) to write

det(λI − A) = λn +
n∑

m=1

Dmλn−m

(ii) to develop Dm as a function of {T1, T2, . . . , Tm} : Tk ≡ trAk, and (iii) to
use

Tk ≡ trAk = λk
1 + λk

2 + · · · + λk
n

Development of the coefficients Dm can be accomplished by an argument I
devised in 1958 (thinking—mistakenly—that I was the first to venture down
that trail2), and have on several occasions refined to serve a variety of
applications. Most readily accessible is some material I wrote to be of service
to Richard Crandall,3 from which I will be content here simply to quote. The

2 The first appears to have been Urbain Le Verrier (1811–1877), whose
calculations led to the discovery of Neptune (1846) and to recognition of the
anomalous precession of the perihelion of Mercury (1859). It was upon a
foundation laid by Le Verrier that Dmitry Faddeev (1907–1989) erected the
“Le Verrier-Faddeev characteristic polynomial algorithm.”

3 “A Mathematical Note: Algorithm for the efficient evaluation of the trace
of the inverse of a matrix,” (December, 1996). That paper provides refrences
to several previous discussions of this material.
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argument proceeds

det(λI − A) = λn det(I − xA) : x ≡ 1/λ

det(I − xA) = exp
{
tr log(I − xA)

}

= exp
{
−T1x − 1

2T2x2 − 1
3T3x3 − 1

4T4x4 − · · ·
}

= 1 − 1
1!

[
T1

]
x

+ 1
2!

[
T 2

1 − T2

]
x2

− 1
3!

[
T 3

1 − 3T1T2 + 2T3

]
x3

+ 1
4!

[
T 4

1 − 6T 2
1 T2 + 3T 2

2 + 8T1T3 − 6T4

]
x4

...
(−)n

[
stuff

]
xn

giving

det(λI − A) = λn − 1
1!

[
T1

]
λn−1

+ 1
2!

[
T 2

1 − T2

]
λn−2

− 1
3!

[
T 3

1 − 3T1T2 + 2T3

]
λn−3

+ 1
4!

[
T 4

1 − 6T 2
1 T2 + 3T 2

2 + 8T1T3 − 6T4

]
λn−4

...

(−)n
[
stuff

]
λ0

= λn +
n∑

m=1

Dmλn−m

where the coefficients can be described

Dm = (−)m 1
m!

∣∣∣∣∣∣∣∣∣∣∣∣

T1 T2 T3 T4 . . . Tm

1 T1 T2 T3 . . . Tm−1

0 2 T1 T2 . . . Tm−2

0 0 3 T1 . . . Tm−3
...

...
...

...
. . .

...
0 0 0 0 . . . T1

∣∣∣∣∣∣∣∣∣∣∣∣

: m = 1, 2, . . . , n (9.1)

= 0 : m > n

It is obvious that in the n -dimensional case Dn = (−)n
[
stuff

]
= det A, while

Dm>n = 0 is easily seen to follow from the Cayley-Hamilton theorem:

An +
n∑

m=1

DmAn−m = O

In the case n = 2 we recover (4).
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The eigenvalue representation. The results developed on the preceding page
are formulated in tems of the elements aij of A. But if A is diagonal, or can
be brought to diagonal form by a similarity transformation S –1AS, it follows
from this general property tr(AB) = trBA) of the trace that (as was remarked
already on page 3)

Tk ≡ trAk = λk
1 + λk

2 + · · · + λk
n (9.2)

the validity of which is actually unrestricted.4 On the other hand, we have

det(λI − A) =
n∏

k=1

(λ − λk) = λn − λn−1
∑

1!k!n

λk

+ λn−2
∑

1!k1<k2!n

λk1λk2

− λn−3
∑

1!k1<k2<k3!n

λk1λk2λk3

...

(−)nλ0 · λ1λ2 · · ·λn

(10)

where (since the λ’s commute)
∑

1!k!n

λk is a symmetric sum of
(n
1

)
1st -order terms

∑

1!k1<k2!n

λk1λk2 is a symmetric sum of
(n
2

)
2nd-order terms

∑

1!k1<k2<k3!n

λk1λk2λk3 is a symmetric sum of
(n
3

)
3rd-order terms

...
λ1λ2 · · ·λn is a symmetric sum of

(n
n

)
nth-order terms

In (9) and (10) we have two alternative eigenvalue-based descriptions of the
coefficients Dm that enter into the construction of the characteristic polynomial
of the n×n matrix A. We turn now to discussion of their evident equivalence.

Let X signify the n -element set of variables {x1, x2, . . . , xn}. Elementary
symmetric polynomials are multinomials of the form encountered in (10):

e0(X) = 1

e1(X) =
∑

λk : 1 ! k ! n

em!n(X) =
∑

λk1λk2 · · ·λkm : 1 ! k1 < k2 < · · · < km ! n

em>n(X) = 0

4 A similar remark pertains to the identity det A = etr(logA ) which provided
our point of departure.
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At (9.2) we encountered symmetric polynomials of the form

pk(X) = xk
1 + xk

2 + · · · + xk
n : kth power sum

Symmetric polynomials in the variables X exist in infinite variety.5 The set
of such objects is closed under addition and multiplication, so is a ring, RX.
The elementary symmetric functions ei(X) : i = 0, 1, 2, . . . , n ascquire special
importance from the fundamental theorem of symmetric polynomials, which
asserts6 that every element q(X) ∈ RX admits of unique formulation as a
polynomial combination of elementary polynomials:

q(X) = P (e0(X), e1(X), . . . , en(X))

ContactwithNewton. Let L signify the set of variables {λ1, λ2, . . . , λn}. Reading
from (10) and (9.1), which provide alternative descriptions of the Dk in the
characteristic polynomial of the n -dimensional matrix A, we are in position
now to write (for m = 1, 2, . . . n)

em(L) = 1
m!

∣∣∣∣∣∣∣∣∣∣∣∣

p1(L) p2(L) p3(L) p4(L . . . pm(L)
1 p1(L) p2(L) p13(L) . . . pm−1(L)
0 2 p1(L) p2(L) . . . pm−2(L)
0 0 3 p1(L) . . . pm−3(L)
...

...
...

...
. . .

...
0 0 0 0 . . . p1(L)

∣∣∣∣∣∣∣∣∣∣∣∣

(11.1)

and em>n(L) = 0. Which, when spelled out (if we omit the arguments), read

e1 = p1

e2 = 1
2! [p

2
1 − p2]

e3 = 1
3! [p

3
1 − 3p1p2 + 2p3]

e4 = 1
4! [p

4
1 − 6p2

1p2 + 3p2
2 + 8p1p3 − 6p4]

...
em = 0 : m > n






(11.2)

Equations (11.2) are precisely the Newton identities that describe the elementary
symmetric polynomials as polynomials in power sums, and so inform us that if—
as the fundamental theorem asserts–the polynomials em(L) provide an algebraic
basis in RL then so also do the polynomials pk(L). The equations (11.2) are

5 Take an arbitrary polynomial in variables {x1, x2, . . . , xm!n}, hit it with∑
P, where P is a permutation of the elements of X ≡ {x1, x2, . . . , xn}.
6 See theWikipedia article“Fundamental theorem of symmetricpolynomials.”
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equations (11.2) are usually obtained recursivly from

e1 = p1

2e2 = e1p1 − p2

3e3 = e2p1 − e1p2 + p3

4e4 = e3p1 − e2p2 + e1p3 − p4

...






(12.1)

Recursive inversion of (11.2) or of (12.1) gives

p1 = e1

p2 = e2
1 − 2e2

p3 = e3
1 − 3e1e2 + 3e3

p4 = e4
1 − 4e2

1e2 + 4e1e3 + 2e2
2 − 4e4

...






(12.2)

These are the Newton identities that had been obtained already in 1629 by
Albert Girard.

Working from det(I−xA) = exp
{
tr log(I−xA)

}
, we on page 4 obtained a

result that in terms of the symmetric functions em(L) and pk(L) can be written

exp
{
− p1x − 1

2p2x
2 − 1

3p3x
3 − · · ·

}
= 1 − 1

1!e1x + 1
2!e2x

2 − 1
3!e3x

3 + · · ·

or
∞∑

m=0

emxm = exp
{ ∞∑

k=1

(−)k+1 1
k pkxk

}

which generates the identities (11.2). Similarly, we have

∞∑

k=1

(−)k+1 1
k pkxk = log

{ ∞∑

m=0

emxm
}

which generates (12.2).

Concluding remarks. Symmetric polynomials have been studied for nearly 400
years, so there is little fresh to be said about them, and nothing here can be
said to be “fresh” except, perhaps, for my approach—from linear algebra, via
the beautiful but nameless identity det(I − xA) = exp

{
tr log(I − xA)

}
.7

These pages can be dismissed as the sentimental indulgence of an old man,
fruit of the confluence of three events of some importance to me in the span

7 For a good survey of the subject, see, for example, the Wikipedia article
“Newton’s identities.”
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of my mathematical career. In chronological order:

In the spring of 1953, I was a sophomore student in the last class taught
by Robert Rosenbaum (1915–2017) before he left Reed College to join the
Wesleyan faculty. The subject was projective geometry, the principal texts were
Introduction to Higher Geometry by William Graustein (1888–1941), Projective
and Analytical Geometry by John Todd (1908–1994), supplemented by Bob’s
own mimeographed notes, still damp and smelling of alcohol when they were
distributed at the beginning of the hour. I was asked to present a survey of the
basics of the theory of symmetric polynomials—a subject for which I developed
an affection, but to which I never (until now) had occasion to return.

In 1958, while working on my doctoral dissertation, I encountered need
to describe the nth derivative of a composite function F (x) = Φ(f(x)). While
trying to track down a relevant reference in the Brandeis University library
I happened by lucky accident upon Advanced Problem No. 4782 which had
been submitted by V.F. Ivanoff to American Mathematical Monthly (65, 212
(1958)). The problem had been solved by Francesco Faà di Bruno (1825–1888:
classmate of Hermite, beatified in 1988). Ivanoff asked for demonstrations (of
which I supplied several) that di Bruno’s result can be formulated

F (n)(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′D f ′′D f ′′′D f ′′′′D . . . f (n)D
−1 f ′D 2f ′′D 3f ′′′D . . .

(n−1
1

)
f (n−1)D

0 −1 f ′D 3f ′′D . . .
(n−1

2

)
f (n−2)D

0 0 −1 f ′D . . .
(n−1

3

)
f (n−3)D

...
...

...
...

. . .
...

0 0 0 0 . . . f ′D

∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ(f) (13)

where DkΦ(f) ≡
(

d
df

)k
Φ(f). Thus did ramifications8 of (13)—determinants of

that triangular design, adapted to many diverse applications—come to
assume—as here—a recurrent place in my work.

Finally, symmetric polynomials were recalled to mind by the expression

n∏

m=1,m $=k

(λ − λm)

that figures prominently in my most recent work.9 The present essay falls
again—here as there—under the head “The secret lives of eigenvalues”. . . as a
quanum physicist might argue everything in the physical world does.

8 See “Some applicatioms of an elegant formula due to I. F. Ivanoff,” notes
for a seminar presented on 28 May 1969 to the Applied Math Club at Portland
State University (collected seminars 1963–1970).

9 “Eigenvalues as building bricks,” (December 2019).


